A CLASS OF DIMENSION-SKIPPING GRAPHS

Igor KŘĺŽ

Received 31 December 1983

For $n \ge 6$ there exists a graph G with dim G = n, dim $G^* \ge n + 2$, where G^* is G with a certain edge added.

The dimension dim G of a graph G (in this note a graph is a symmetric graph without loops) is the least number n such that G is embedable into $\prod_{i=1}^n G_i$, with G_i complete (see [1], [2], [3]). Equivalently, the dimension can be defined as follows (see e.g. [2], [3]): a set of edges of a graph is said to be an equivalence, if it constitutes of a disjoint system of cliques; the dimension of a graph G is the least number n such that the system of edges of the complement c(G) of G can be written as $\bigcup_{i=1}^n E_i$, where the E_i are equivalences such that $\bigcap_{i=1}^n E_i = \emptyset$.

From the latter it is obvious that when removing an edge from a graph G, the dimension increases by at most one. On the other hand, it is not so obvious what happens when a single edge is added. One sess easily that the dimension doubles at worst and it is known that in fact it does not increase more than 3/2-times. There wasn't, however, known so far any example of an increase over dim G+1. A construction of graphs where adding an edge causes an increase by two or more was formulated as a problem in [1]. In this note, we will present a class of graphs G_n $(n \ge 6)$ such that by adding a suitable edge one obtains a graph of dimension $\ge \dim G_n + 2$.

Conventions and notation. A graph G=(X, E) is a symmetric graph without loops. The edge connecting nodes x and y will be denoted by xy. A clique in G is the set of vertices of a complete subgraph of G. We will denote by K(M) the set of edges of the complete graph with the set of vertices M. Thus, an equivalence relation mentioned above is a union $\bigcup_i K(M_i)$ with M_i disjoint. If G=(X, E) is a graph, c(G) designates the complement graph $(X, K(X) \setminus E)$. The cardinality of a set M will be denoted by #(M).

I. KŘÍŽ 318

The Construction. Let $x, y, a_1, ..., a_n$ be distinct points, $n \ge 2$. Put $A = \{x, y, a_1, ..., a_n\}$..., a_n . Let sets $M_{i,j}$, $i,j=1,...,n, i\neq j$ be such that for any i,j,k,l,i',j'

- $\#(M_{i,j}\cap M_{k,l}) \le 1$ if $i \ne k$ or $j \ne l$, $\#(M_{i,j}\cap M_{k,l}) = 1$ for $i \ne k$ and $j \ne l$.
- $M_{i,j} \cap M_{k,l} \cap M_{i',j'} = \emptyset$ if the pairs (i,j), (k,l), (i',j') are distinct (i=k=i')is excluded).

$$M_{i,j} \cap M_{k,j} = \emptyset \quad \text{if} \quad i \neq k.$$

4)
$$M_{i,j} \cap M_{i,k} = \{a_i\} \quad \text{if} \quad j \neq k.$$

$$M_{i,j}\cap A=\{a_i\}.$$

6)
$$\#(M_{i,j})$$
 does not depend on i,j and exceeds n .

(e.g., we can set $M_{i,j} = \{a_i\} \cup \{\{(i,j),(k,l)\} | i \neq k, l \neq k, j \neq l, k, l = 1, ..., n\}$). $N_i = \{x, y, a_i\}$ for i = 1, ..., n-1 and $N_n = \{x, a_n\}$. We construct a graph H_n as follows: the set of vertices is $\bigcup_{i,j} M_{i,j} \cup A$,

set of edges is $\bigcup_{i} K(N_i) \cup \bigcup_{i,j} K(M_{i,j})$. Further, put

$$G_n = c(H_n)$$

$$H_n^* = H_n \setminus \{xy\}$$

$$G_n^* = c(H_n^*).$$

(Thus, G_n^* is obtained from G_n by adding the edge xy.)

Theorem 1. We have dim $G_n = n$.

Proof. Consider the equivalence relations $E_i = K(N_i) \cup \bigcup K(M_{j,i}), i = 1, ..., n$. According to the properties of $M_{i,j}$ and the definition of N_n we see easily that $\bigcap_{i=0}^{n} E_i = \emptyset$.

Since the set of edges of H_n is equal to $\bigcup_{i=1}^n E_i$, dim $G_n \leq n$.

On the other hand, we have dim $G_n \ge n$: none of the *n* neighbours $a_1, ..., a_n$ of x are connected in H_n .

Lemma 1. Let the set $B_i = \bigcup_i M_{i,j} \setminus \{a_i\}$ be a union of n-1 cliques in H_n , $n \ge 2$. Then these cliques coincide with $M_{i,j} \setminus \{a_i\}, j=1,...,\hat{i},...,n$ (the roof means omission).

Proof. By 4), the sets $M_{i,j} \setminus \{a_i\}$ are disjoint. Hence, it suffices to show that for any other clique $C \subset B_i$ we have $\# C < \# (M_{i,j}) - 1$. Suppose the contrary. Then, obviously, the large C is not contained in any $M_{i,j}$. In consequence, we have $\# C(\cap M_{i,j}) \le 1$: indeed, if not, we could choose distinct a, b, c in C such that $a \in M_{i,j}$, $M_{i,j} \in M_{i,j}$. $b, c \in M_{i,j'}$ $(j \neq j')$. Since C is a clique, we have $ab \in K(M_{k,l})$ and $ac \in K(M_{k',l'})$ for some k, l, k', l'. By 2) necessarily k = k', l = l' so that $b, c \in M_{i,j'} \cap M_{k,l}$, contradicting 1).

But if $\#(C \cap M_{i,j}) \le 1$ we conclude $\#(C) \le n-1$, while $\#(M_{i,j}) > n$.

Theorem 2. For $n \ge 6$ it holds

$$\dim G_n^* \ge n+2.$$

Proof. It will be done by contradiction. Let us suppose that we can cover H_n^* by n+1 equivalence relations E_1, \ldots, E_{n+1} . First, we prove that each of the $K(M_{i,j})$ (i < n) is contained in some of the E_k . Let A_i be the set of all neighbours of a_i , put $A_{i,k} = \{u | a_i u \in E_k\}$. Clearly, $A_{i,k}$ is a clique in H^* . Thus, we have constructed a covering of A_i by n+1 cliques. Since A_i (as an induced subgraph of H_n) has three components, namely $\{x\}$, $\{y\}$ and B_i , we see that n-1 of the cliques have to cover B_i . By lemma 1, they coincide with the sets $M_{i,j} \setminus \{a_i\}$. Consequently, each of the $K(M_{i,j})$ is contained in an E_k .

Denote by \overline{E}_k the union of all the $K(M_{i,j})$ with $i=1,\ldots,n-1$ and $j=1,\ldots,n$, contained in E_k . According to the properties of the $M_{i,j}$, each of the sets $\overline{E}_1,\ldots,\overline{E}_{n+1}$ has to be contained in some $P_i = \bigcup \{K(M_{j,i})|j=1,\ldots,i-1,i+1,\ldots,n-1\}$. (Note that P_n plays a special role). We can, hence, reindex the equivalences so that $\overline{E}_i \subset P_i$ for $i=1,\ldots,n$. As for \overline{E}_{n+1} we have two possibilities:

- Case 1. $\overline{E}_{n+1} \subset P_i$ for some i < n, say $\overline{E}_{n+1} \subset P_1$. Then $\overline{E}_2 = P_2, \ldots, \overline{E}_n = P_n$ (see above), i.e. the vertex a_1 meets all the relations $\overline{E}_2, \ldots, \overline{E}_n$. Then a_1x, a_1y belong to E_1, E_{n+1} . This implies that at most two of the other a_jx, a_ky belong to $E_1 \cup E_{n+1}$ and hence (recall that $n \ge 6$) $a_ix, a_iy \in E_2 \cup \ldots \cup E_n$ for some $i \in \{2, \ldots, n-1\}$. But there is only one of the E_2, \ldots, E_n left for this purpose, namely E_i , all the others contain some a_iu with $u \in B_i$.
- Case 2. $\overline{E}_{n+1} \subset P_n$. Then $\overline{E}_2 = P_1, ..., \overline{E}_{n-1} = P_{n-1}$. Now for at most four indices we can have either $a_i x \in E_n \cup E_{n+1}$ or $a_i y \in E_n \cup E_{n+1}$. Thus, for some $j \in \{1, ..., n-1\}$ we have (recall $n \ge 6$) $a_j x, a_j y \in E_1, ..., E_{n-1}$. Again, we have got a contradiction, since only E_j is left for use.

Remark. For n < 6 our construction does not work; we have there dim $G_n^* = n + 1$. For n = 6 dim $G_n = 8$. We do not know whether dim $G_n^* = n + 2$ holds generally for $n \ge 6$, or if perhaps some of the G_n^* skip more; a general upper estimate seems to be n + 4.

References

- L. Lovász, J. Nešetřil and A. Pultr, On a Product Dimension of Graphs, Journal of Combinatorial Theory, B, 29 (1980), 47—67.
- [2] J. Nešetřil and A. Pultr, A Dushnik—Miller type dimension of graphs and its complexity, in: Fundamentals of Computation Theory, Lecture Notes in Comp. Sci. 56, Springer-Verlag, Berlin—New York, (1977), 482—493.
- [3] J. Nešetřil and V. Rödl, A simple proof of the Galvin—Ramsey property of the class of all finite graphs and a dimension of a graph, *Discr. Math.* 23 (1978), 49—55.

Igor Kříž

Matematicko-fyzikálni Fakulta Univerzity Karlovy 18600 Praha 8 Sokolovská 83 ČSSR